Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SPT-3G+ is the next-generation camera for the South Pole Telescope (SPT). SPT is designed to measure the cosmic microwave background (CMB) and the mm/sub-mm sky. The planned focal plane consists of 34,000 microwave kinetic inductance detectors (MKIDs), divided among three observing bands centered at 220, 285, and 345 GHz. Each readout line is designed to measure 800 MKIDs over a 500 MHz bandwidth, which places stringent constraints on the accuracy of the frequency placement required to limit resonator collisions that reduce the overall detector yield. To meet this constraint, we are developing a two-step process that first optically maps the resonance to a physical pixel location, and then next trims the interdigitated capacitor (IDC) to adjust the resonator frequency. We present a cryogenic LED apparatus operable at 300 mK for the optical illumination of SPT-3G+ detector arrays. We demonstrate integration of the LED controls with the GHz readout electronics (RF-ICE) to take data on an array of prototype SPT-3G+ detectors. We show that this technique is useful for characterizing defects in the resonator frequency across the detector array and will allow for improvements in the detector yield.more » « lessFree, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available December 11, 2025
-
Integrating second order nonlinear (χ(2)) optical materials on chip is an ongoing challenge for Si photonics. Noncentrosymmetric molecular crystals have the potential to deliver high χ(2) nonlinearity with good thermal stability, but so far have been limited to growth from solution or the melt, which are both difficult to control and scale up in manufacturing. Here, we show that large (>100 μm) single crystal domains of the nonlinear molecule 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene] malononitrile (OH1) can be grown monolithically on either glass or Si via vacuum evaporation, followed by a short thermal annealing step. The crystallites are tens of nanometer thick and exhibit strong second harmonic generation with their primary χ(2) tensor component lying predominantly in plane. Remarkably, we find that a single domain can grow uninterrupted through nearby channels etched on a Si wafer, which may provide a path to integrate OH1 on Si or Si3N4 waveguides for a broad range of χ(2)-based photonic integrated circuit functionality.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract The preferential growth of α‐phase formamidinium perovskite (α‐FAPbI3) at low temperatures can be achieved with the incorporation of chloride‐based additives, with methylammonium chloride (MACl) being the most common example. However, compared to other less‐volatile chloride additives, MACl only remains in the growing perovskite film for a short time before evaporating during annealing, primarily influencing the early stages of film formation. In addition, evaporation of MACl as methylamine (MA0) and HCl can introduce a side reaction between MA0and formamidinium (FA), undermining the compositional purity and phase stability of α‐FAPbI3. In this study, it is demonstrated that addition of iodine (I2) into the FAPbI3precursor solution containing MACl suppresses the MA‐FA side reaction during annealing. Additionally, MACl evaporation is delayed owing to strong interaction with triiodide. The added I2facilitates spontaneous growth of α‐FAPbI3prior to annealing, with an improved bottom morphology due to the formation of fewer byproducts. Perovskite solar cells derived from an I2‐incorporated solution deliver a champion power conversion efficiency of 25.2% that is attributed to suppressed non‐radiative recombination.more » « less
-
Abstract Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance. This study presents a grain engineering methodology that combines solvent engineering and heterostructure construction to improve light outcoupling efficiency and defect passivation. Solvent engineering enables precise control over grain size and distribution, increasing light outcoupling to ~40%. Constructing 2D/3D heterostructures with a conjugated cation reduces defect densities and accelerates radiative recombination. The resulting near-infrared perovskite light-emitting diodes achieve a peak external quantum efficiency of 31.4% and demonstrate a maximum brightness of 929 W sr−1m−2. These findings indicate that perovskite light-emitting diodes have potential as cost-effective, high-performance near-infrared light sources for practical applications.more » « lessFree, publicly-accessible full text available December 1, 2025
An official website of the United States government

Full Text Available